Parametric Lorenz Curves and the Modality of the Income Density Function

نویسنده

  • Melanie Krause
چکیده

Similar looking Lorenz Curves can imply very different income density functions and potentially lead to wrong policy implications regarding inequality. This paper derives a relation between a Lorenz Curve and the modality of its underlying income density: Given a parametric Lorenz Curve, it is the sign of its third derivative which indicates whether the density is unimodal or zeromodal (i.e. downward-sloping). Several singleparameter Lorenz Curves such as the Pareto, Chotikapanich and Rohde forms are associated with zeromodal densities. The paper contrasts these Lorenz Curves with the ones derived from the (unimodal) Lognormal density and the Weibull density, which, remarkably, can be zeroor unimodal depending on the parameter. A performance comparison of these five Lorenz Curves with Monte Carlo simulations and data from the UNU-WIDER World Income Inequality Database underlines the relevance of the theoretical result: Curve-fitting of decile data based on criteria such as mean squared error might lead to a Lorenz Curve implying an incorrectly-shaped density function. It is therefore important to take into account the modality when selecting a parametric Lorenz Curve. JEL Classification: C13, C16, D31, O57

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Lorenz Curves and its Relationship with Reliability Indicators

The problem of poverty can not be considered without paying care to the topic of income distribution. In fact, the concept of poverty refers to the lowest class in the distribution of income, and inequality in the income distribution is related to all stages of society. Based on the income distributions that are unfairly priced, many indices have been developed to measure the size of inequality...

متن کامل

Tsallis Maximum Entropy Lorenz Curves

In this paper, at first we derive a family of maximum Tsallis entropy distributions under optional side conditions on the mean income and the Gini index. Furthermore, corresponding with these distributions a family of Lorenz curves compatible with the optional side conditions is generated. Meanwhile, we show that our results reduce to Shannon entropy as $beta$ tends to one. Finally, by using ac...

متن کامل

Robust Lorenz Curves: A Semi-Parametric Approach

Lorenz curves and second-order dominance criteria are known to be sensitive to data contamination in the right tail of the distribution. We propose two ways of dealing with the problem: (1) Estimate Lorenz curves using parametric models for income distributions, and (2) Combine empirical estimation with a parametric (robust) estimation of the upper tail of the distribution using the Pareto mode...

متن کامل

The Zografos–Balakrishnan-log-logistic Distribution

Tthe Zografos–Balakrishnan-log-logistic (ZBLL) distribution is a new distribution of three parameters that has been introduced by Ramos et el. [1], and They presented some properties of the new distribution such as its probability density function, The cumulative distribution function, The  moment generating function, its hazard (failure) rate function, quantiles and moments, Rényi and Shannon ...

متن کامل

The Beta Gompertz Geometric distribution: Mathematical Properties and Applications

‎In this paper‎, ‎a new five-parameter so-called Beta-Gompertz Geometric (BGG) distribution is introduced that can have a decreasing‎, ‎increasing‎, ‎and bathtub-shaped failure rate function depending on its parameters‎. ‎Some mathematical properties of the this distribution‎, ‎such as the density and hazard rate functions‎, ‎moments‎, ‎moment generating function‎, ‎R and Shannon entropy‎, ‎Bon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012